3(5x^2-2x^2-50)-23(7x^2+98x-2)=45

Simple and best practice solution for 3(5x^2-2x^2-50)-23(7x^2+98x-2)=45 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(5x^2-2x^2-50)-23(7x^2+98x-2)=45 equation:



3(5x^2-2x^2-50)-23(7x^2+98x-2)=45
We move all terms to the left:
3(5x^2-2x^2-50)-23(7x^2+98x-2)-(45)=0
We multiply parentheses
15x^2-6x^2-161x^2-2254x-150+46-45=0
We add all the numbers together, and all the variables
-152x^2-2254x-149=0
a = -152; b = -2254; c = -149;
Δ = b2-4ac
Δ = -22542-4·(-152)·(-149)
Δ = 4989924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4989924}=\sqrt{324*15401}=\sqrt{324}*\sqrt{15401}=18\sqrt{15401}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2254)-18\sqrt{15401}}{2*-152}=\frac{2254-18\sqrt{15401}}{-304} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2254)+18\sqrt{15401}}{2*-152}=\frac{2254+18\sqrt{15401}}{-304} $

See similar equations:

| 3(z+5)=2z+5 | | 30.5+12x=78.5 | | w-1.16=3.6 | | 4=x= | | 12w^2+5W-7=0 | | y+3.6=9.36 | | v+6.6=9.41 | | 27-13t+32-2t+10t= | | 96+y=180 | | 7a=78 | | (x+2)/3=2/3 | | X^3-5x-7=0 | | 180n-360=156n | | 125x=75 | | 2048=2x*x | | 8.15x+42.55=85.1 | | 1/3x-2/3x=1/6 | | 2x+26=14 | | 2.5x+40=500 | | -0.2q+11=-32 | | 87/2x=8 | | |x-1|=8 | | 7p-4=-p+9+2p+3p | | 180-x=3(134-x) | | 13.4=25x+3.5 | | 37=6x+11 | | Y=3x-5x | | 150=600(a+1)/24 | | a=3/4=1/8 | | 94=2(w+5)+2w | | 7x=+9=51 | | (3x+9)^2=2x+2(2x+2+27) |

Equations solver categories